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ON VARIATIONAL INEQUALITY FOR AN OPERATOR 
OF DYNAMICS OF ELASTIC ROD* 

A.M. KHLUDNEV 

New formulation of the one-sided problem (variational inequality) for the operator 
of nonlinear oscillations of a rod with restricted flexure, is given and substant- 
iated. The method can be applied to other nonlinear problems. In the case of a 
linear operator the method is reduced to the known methods with a given constraint 
imposed on the velocity of motion. 

In recent times a number of results have been obtained for the linear and nonlinearhyper- 
bolic operators, with restriction imposed on the time derivative of the solution. As far as 
the general hyperbolic operators are concerned, the results obtained apply only to the linear 
operators /1,2/. In particular /3/ gives the corresponding assertions for the linear theory 
of elasticity. Concrete nonlinear cases are discussed in /4-7/. From the physical point of 
view however, the most interesting variational inequalities are those in which a constraint 

is imposed on the function sought /0/ (or, of theparabolic operators are being discussed, on 

the time integral of the solution, see /9/). Direct application of the penalty operatortech- 

nique to such problem does not lead to results expected, since the corresponding estimates of 

the solution are not available. 

The operator of nonlinear oscillations of a rod has the form /lo/ 

Let Q = (0, l), Q = R S (0, Z’), Hm(Q)= Wp”“(Q) be the Sobolev space and H,“‘(Q) Cp(R) a sub- 
space obtained by closure of smooth finite functions. The brackets (. ,. ) denote the duality 

between H-"(Q) (conjugated with H”“(Q)) and H,,“‘(Q), as well as the scalar product in L2 (Q). 
Let Kbe any closed convex space in Ho?(Q) containing a null element and a set of internal 
points intK of which is nonempty. 

Theorem. Let F,GeL%(Q), woEHo’( u,EHo’(Q), wl, u,EL’ (‘2) and u',, e int K. Then a pair 

of functions U,W exists such that 

t 
u’ - s u = 2’, + + w22 

(1) 
u,d7=g. 

(1 

j’i~‘+~~~~rn-iV.,~~~)~}dT-f,B--I()dt~o 
0 

w EL+ T; Ho2(Q)), UELrn(O, T; HI?(Q)), 

w’, u’ E L” (0, I’: L2 (c-q) 

g = u1 + i G (T) dT, +wl+&dT 
0 0 

The inequality holds for any 'pi L2(0, T; H,*(Q)), q(t)= K almost everywhere, and 

w(0) = z&J, u (0) = Ug, w(t)= K almost everywhere 

Proof. We introduce the notation 

IL’* (t) = $ W (7) dT, 
b 

U* (t) = i U (T) dT 
0 

Then (1) and (2) canbe rewritten in the form (the asterisk is omitted) 

(2) 
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t 
v”-- ‘U,dz=g, s u = v,’ f -$ wx’= 

Y 

i (g+ wsxxx -~(.~~u),dr-i,yl-~)dt>o 

tc, 20’ E L” (0, T;“Ho= (St)), v. v’ E L-=(0, T; No’ (Cl)), 

WI, v” E L” (0, T; L=(Q) 

The inequality holds for any rp E Ll(O, !I'; H,"(Q)), rq(t)~ K almost everywhere, and w (0) = 0, 
w' (0) = W@, v(0) = 0, v' (0) = vO,w' (t) E K almost everywhere. Let p(q) = J(rp .- P,cp), J :H,Z(8)+ 
H-"(Q) be the mapping of the duality and 9: Hoz(Q)-+K the projection operator /Z/.Consider 
a problem with a penalty, with fixed E>O 

” 

UP‘-- U,,dz=g, s Ue=ve* +-$w,‘, - 
0 

(3) 

74 + WE,, - : o&m, & + f 8 64, = I s 
we (0) = 0, tlLl(O) = wo, ve(O)=O, UC’ (0) = vo 

and we show that ithasa solution. Let ($I,} (j = 1, 2,...) be a basis in the space HoZ(Q). We 
shall seek the Galerkin approximations to this problem in the form (index E is omitted) 

The functions pi,(t),qi,(t) satisfy the following system of ordinary differential equations: 

(4) 

(5) 

w, (0) = 0, w,’ (0) = wn;, v, (0) = 0, I&’ (0) = v,o (6) 

UJ,~~- w. in the norm of H,2(fZ), vno-+vo in the norm of H,'(Q). To obtain the B prioriestimates 
for the problem (4)- (6) we first note that if w,,Eint K, then the approximations u+, will 
satisfy the same inclusion at sufficiently large n. Thus @(w,,)= 0 and (4),(S) yield, at 
t = 0 (the constant c1 is independent of n and I/. 11 is the norm in Lz(Q)) 

II lUnV (0) II + II vllN (0) II< Cl 

Differentiatingnow (4) and (5) with respect to t, multiplying the equations with index j by 

Qjn" (03 Pjn" ( t) respectively and summing from 1 to n over j, we obtain 

The expression containing the penalty operator is nonnegative at almost all t, therefore re- 
jecting it and integrating the resulting inequality, we obtain (cs is independent of 7t and 
the maximum is taken over tE (0, T1) 

We note that w& are bounded in L-(0, 2'; Lz(Q)), therefore the boundedness of /) U,,(t)]1 implies 
mas (1z&,' (Q/I < cQ and hence 

mar {Ii =,,,, ff) II + I! v,, (4 IO < cI (81 

The estimates (7) and (8) guarantee that the system (41, (5) has a solution on [O, Tl. Taking 
into account the boundary conditions we conclude, that a subsequence exists, denotedasbefore 
by lo,> v,,, with the following properties: 

wn -+ Ii,, u;,' + 10' * -_ weakly in .P (0, T; H,z(Q)) (9) 

v,- v, v,' -+ P' + - weakly in L- (0, T; H,,' (Sk)) 
w," -+ d, v," + 2/O Ir - weakly in Lm (0, T; La(Q)) 

Moreover, by virtue of the Lions compactness lemma /2/ we can assume that 

w,,' -+ U,' strongly in L%(Q) (10) 
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We shall show that the above convergence is sufficient for the passage to the limit in (4),(5). 
The properties of the penalty operator imply that 

13 (rcx,') - 5 weakly in I>' (0, 7'; II-' (I!)) 

From (5) we obtain (assuming for the time being that E ~~ 1) 

(U'?%", &') ~+ (I, (Ii.,,. Vn). 11;1') -f (p (ID,'), LL.,,') (f. ti;,‘) (11) 
The symbol (L (to,, z$,), "h') denotes the expression obtained from the second and third term of (S), 
after multiplying by u+,'. Let cf E I,' (0, I'; II,' (Q)). We write 

a, = ((p (u.,') - fi (q). f/T*' - (r)) ,- 0 

Here and henceforth the angular brackets denote integration with respect to t. from 0 to 7'. 
Substituting here (B(w~'), 10~~') from (ll), we obtain 

a, = - ((8 (u), I(.,' - V)) - C(P (%')> V)> + ((f? %')) - ((L(V,, v,), II.,')) - <(a&", Wn')> 
Below we shall show that (see (13)) 

therefore 
lim ((L (~0~, 7>,), ft.,')) > ((L (w, u), ID')) 
- 

8 .< lima, < - (@ (cp), 20’ - cpj) - ((5, cp)j 7 ((f, 10’)) - ((Uw, 4, w’)> - ((w”, d> 

Taking from the limit equation w" + L(w, u) + 5 = f the quantity (w",ID') and substituting it in- 
to the above expression, we conclude that 

<(B (cc) - E, cp - w')> .> 0 
Let us now take cp = tu' + A$, h - con&g E L2 (0, T; Ho2 (Cl)) arbitrary and utilize the semicontin- 
uity property of the operator p. This yields 5 = @(w'). Using now (9) and (lo), we can pass 
to the limit in (4) directly, and this proves that the problem (3) has a solution. 

The proof shows that the constants c2 and c, in (7),(a) are independent of E. Thismeans 
that the functions ID, and Ue will satisfy the same inequalities. Therefore a convergence (9), 
(10) with )L replaced by E exists for the subsequence Q,v,. From the second equation of (3) 
we find that fi(wE')+ 0 in Lm (0, T; H-‘(R)) and also ((p (wE'). w,')>,< c&, cg is independent of t'. 
The above two relations together with the fact that $ is monotonous , yield, in the usual man- 
ner, fi(w') = 0, i.e. u,'(t)~ K almost everywhere. Let 'p E L2 (0, T; Ho2 (a)), q(t) E K almost 
everywhere, i.e. p(q(t)) = 0 almost everywhere. The second equation of (3) yields the inequal- 
ity 

(WE (t) 2 WTxxx (t) - s (d,U,), dr - f(t)> ‘p (t) - 4 (t)) > 0 
cl 

for nearly all TV lo, Tl, therefore 

From the weak convergence W,,'VE1. + w,'u,' in L2(Q) follows 

,c t ZL&J~~ dz -+ 5 w;v; dr weakly in L2(Q) 
0 

and, since w,,'+ w,' strongly in L'(Q), then the passage is possible to the limit in right- 
hand part of second term (12). The equality 

<(ZL.EXXIX> we')) = + II n&X(T) I? 

holds. From (9) (with index n replaced by E) we now conclude that wz(T)+ ~(2') weakly in 
H,'(Q), therefore l&II ~,,(T)ll> llw,, (T)ll. Consequently the lower limit of the right-handside 
of (12) is larger than, or equal to 

(13) 

Passage to the limit in the left-hand side of (12) and in the first equation of (3) as &+O 
follows that used in the Galerkin method, and this completes the proof of the theorem. 

Introducing minor changes in the proof of the above theorem we can establish a result 
relevant to the dynamic of an elastoplastic rod. Let the set K correspond to the yield con- 
dition 

K = {u E H,’ (&) I I u,, I _i q almost everywhere in Q}, 4 - const> 0. 
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Then we have the following theorem. 

Theorem. Let F, GE L* (Q), zoo E H3 (Q) 0 Ho2 (Q), v~EH,’ (Q), q, u1 EL2 (Q), with the rod in 
elastic state at the initial instant, i.e. 1 WOrx 1 <Q. Then the elastoplastic problem cl)- 
(2) has a solution. The idea of formulating the above variational inequality in the form 
shown crystallised after the discussions with A.V. Kazhikhov. 
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